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Magnetic superlattices and nanowires may be described as Heisenberg spin chains of finite length N, where
N is the number of magnetic units �films or atoms, respectively�. We study antiferromagnetically coupled spins
which are also coupled to an external field H �superlattices� or to a ferromagnetic substrate �nanowires�. The
model is analyzed through a two-dimensional map which allows fast and reliable numerical calculations. Both
open and closed chains have different properties for even and odd N �parity effect�. Open chains with odd N are
known �S. Lounis et al., Phys. Rev. Lett. 101, 107204 �2008�� to have a ferrimagnetic state for small N and a
noncollinear state for large N. In the present Brief Report, the transition length Nc is found analytically. Finally,
we show that closed chains arrange themselves in the uniform bulk spin-flop state for even N and in nonuni-
form states for odd N.
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Antiferromagnetic �AF� chains of Heisenberg spins, when
subjected to an external magnetic field �and possibly to a
uniaxial anisotropy�, are known to arrange themselves in a
spin-flop �SF� state where neighboring spins are almost an-
tiparallel and orthogonal to the field.1 However, such a result
is valid, strictly speaking, only in the thermodynamic limit.
For a finite chain, boundary conditions, and finite-size effects
are expected to induce modifications on the bulk spin-flop
configuration, determining a nonuniform canting along the
chain.

A one-dimensional �1D� classical planar model of a
Heisenberg uniaxial antiferromagnet,

HAF = �
i=1

N−1

HE cos��i − �i+1� − �
i=1

N

�HA cos2 �i + 2H cos �i� ,

�1�

was introduced forty years ago2 to study a semi-infinite AF
chain �N→��. In Eq. �1�, HE denotes the exchange field, HA
the anisotropy field, and �i is the angle that the magnetization
of the ith ferromagnetic layer forms with the direction of the
external field, H �spins are assumed to be planar�. The bulk
SF phase appears for H��2HEHA+HA

2 �H�0 for zero an-
isotropy HA�.

At that time, the reference experimental systems were
bulk systems such as MnF2 or MnO, with magnetic ions on
special crystallographic planes interacting ferromagnetically
�FM� and ions between planes interacting AF. With the
spreading of epitaxially grown systems, the model was used
a lot3–8 to study superlattices made of N ferromagnetic layers
which are antiferromagnetically coupled. Some important
theoretical results were found: �i� For semi-infinite systems,
the surface SF state �a phase predicted to anticipate the bulk
SF state when increasing the field� does not exist;5 �ii� for
finite systems, there are important differences between struc-
tures with even and odd N.3,4,6,7

Recently, the model of a finite 1D quantum Heisenberg
antiferromagnet,

Hq = �J1��
i=1

N−1

Si · Si+1, �2�

has gained new interest since it has been used to describe an
AF nanowire deposited on a thin insulating layer.9 Paradig-
matic examples of such a system are linear chains of 1 to 10
Mn atoms epitaxied on a CuN substrate.9 From the analysis
of spin excitations of coupled atomic spins in the dimer and
in the trimer �N=2,3�, the Mn-Mn exchange interaction was
found9 to be antiferromagnetic ��J1�=6.2 meV� and the spin
value to be S=5 /2, identical to the spin of a free Mn atom.
Using these parameters in Eq. �2�, the magnetic behavior of
longer wires could successfully be fitted.9

When such AF Mn nanowires are deposited on a ferro-
magnetic layer, such as Ni�001�, an interesting frustration
phenomenon occurs since the exchange coupling between an
adsorbed Mn spin and the magnetic moment of an underly-
ing Ni atom of the substrate is ferromagnetic,10,11 J2�0, and
thus competes12 with the Mn-Mn antiferromagnetic ex-
change, J1�0. Therefore, in a classical spin approximation,
one is led to consider the model11

HN = �J1��
i=1

N−1

cos��i − �i+1� − J2�
i=1

N

cos �i, �3�

where �i denotes the angle that the ith spin of the AF nano-
wire forms with respect to the magnetization of the ferro-
magnetic substrate. Since the coupling J2 is localized on the
ith site, it is apparent that it plays the same role as the mag-
netic field 2H in Eq. �1�, while �J1� has to be identified with
HE, and HA �the uniaxial anisotropy� is zero. Therefore,
when N is finite and open boundary conditions are assumed,
the existence of different ground states for odd versus even N
is a well-known result.3,7 Different ground states also reflect
on different behaviors for the spin-wave excitations.4,6

In a recent letter, S. Lounis et al.,11 using both ab initio
results and solutions to the classical Heisenberg model �3�,
confirmed that the ground state of finite AF nanowires de-
posited on ferromagnets depends on the parity of the number
N of atoms. They also found that, while even chains always
have a noncollinear �NC� ground state, for odd N a transition
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from a collinear ferrimagnetic �FI� to a NC configuration
occurs when the chain length N exceeds a critical value Nc.
For example, using an iterative numerical scheme in order to
minimize Eq. �3�, the transition length was estimated11 to be
nine atoms for Mn chains on Ni�001�.

Here we show that the classical Heisenberg model �3� can
be investigated with great numerical and analytical profit in
terms of a two-dimensional �2D� map method.5–7,13–16 Such
an approach allows a fast and exact determination of the
ground-state configuration of finite chains and to find an ana-
lytical expression for the transition length for odd open
chains.

By the map method, we also study model �3� in the case
of periodic boundary conditions. For such “closed” chains,
we find another even-odd effect: even chains have spins ar-
ranged in the spin-flop state, such as infinite chains, while
odd chains arrange themselves in noncollinear states.

In order to find the equilibrium configurations of the clas-
sical Heisenberg model �3� by the 2D map method, we
introduce15 the variable sn=sin��n−�n−1�. Denoting by h
=J2 / �J1� the ratio between competing exchange interactions,
minimization of Eq. �3� gives17

sn+1 = sn − h sin �n, �n+1 = �n + sin−1�sn+1� . �4�

These equations define an iterative 2D map,18 i.e., point
�� ,s� in the phase space is mapped to a point ��� ,s��. The
fixed points of order two �sn+2=sn and �n+2=�n� correspond
to the collinear AF configuration ��0,0�↔ �� ,0�� and to the

bulk SF state ���̄ , sin 2�̄�↔ �−�̄ ,−sin 2�̄�, with cos �̄=h /4�.
In Fig. 1 we plot the fixed points and the evolution of the
map for different initial conditions and h=0.376 �it is the
special value considered in Ref. 11 as representative of AF
Mn nanowires on Ni�001��.

Boundary conditions for open chains of N atoms are taken
into account5,16 by introducing a fictitious �N+1�-th atom

and imposing s1=0=sN+1. The determination of the ground
state therefore corresponds to finding the value �1 such that,
iterating the map N times from the point P1= ��1 ,0�, we get
a point PN+1= ��N+1 ,0�, with both P1 and PN+1 located on the
horizontal axis, s=0. The N values �1 , . . . ,�N then give the
sought-after equilibrium configuration. In Fig. 1 we also plot
the first N steps of the map evolution giving the ground states
for N=9 �red solid squares� and N=10 �blue solid circles�.
Different behaviors for even and odd N can be inferred from
the different location of their trajectories in the phase por-
trait. The configurations are explicitly shown in Fig. 2.

The existence of a minimum length to get a noncollinear
configuration for odd N is clear from Fig. 3, where we plot
sN+1 as a function of �1, assuming s1=0. For odd N�9, the
only zeros are the AF fixed points, corresponding to a col-
linear ferrimagnetic �FI� configuration; but for N=9,
dsN+1 /d�1 changes sign at �1=0, and an additional solution
appears: the noncollinear configuration. For even N, non-
trivial solutions exist already for N=2 �dashed line�. The
inset of Fig. 3 shows that for large N the function sN+1��1� is
strongly oscillating with several zeros �1

�k�. In order to deter-
mine the ground state, the energies of all the NC configura-
tions with �1=�1

�k� must be compared.
We are now going to show that by linearizing the map

θ
-0.4

-0.2

0

0.2

0.4
s

π 2π0

h=0.376

SF

SF

AF

AF

FIG. 1. �Color online� Phase portrait for mapping �Eq. �4��. Full
red squares and blue circles correspond to equilibrium configura-
tions for open chains with N=9 and N=10, respectively. Full ar-
rows point to the values �1 for the first atom of the chains. Dashed
arrows point to the values �N+1 �denoted by open symbols� for the
fictitious �N+1�-th atom. Arrow tips allow one to follow the evolu-
tion of the map, whose hyperbolic and elliptic fixed points of order
two, respectively, denoted by SF and AF, correspond to uniform
states.
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FIG. 2. �Color online� Equilibrium configurations �1 , . . . ,�N cal-
culated by the 2D map method for open chains with N
=9,10,39,40, and for a closed chain �PBC� with N=39.
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FIG. 3. �Color online� We plot sN+1��1�, assuming s1=0, for
different, small values of N �main figure� and for N=39 �inset�. The
arrows point to the equilibrium values �1 for the first atom of the
N=9 chain �red full line, full arrow� and of the N=2 chain �dashed
line, dashed arrow�.
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nearby the fixed points, it is indeed possible to determine the
exact analytical condition for the rising of the NC state in the
case of an open chain with odd N. If we start from a point
P1= �s1 ,�1� close to the fixed point �0,0�, iterated points on
the map are oscillating between the AF fixed points: more
precisely, even P2k are close to �� ,0� and odd P2k+1 are close
to �0,0�. So, if we write

�2k = � + �2k, �5�

�2k+1 = �2k+1, �6�

the quantities �n are small for any n, as sn are. Now, we can
linearize the map in the two cases P2k−1→P2k and P2k
→P2k+1. If we write

��2k

s2k
	 = A1��2k−1

s2k−1
	 and ��2k+1

s2k+1
	 = A2��2k

s2k
	

we get the matrices

A1 = �1 + h − 1

− h 1
	 and A2 = �1 − h − 1

h 1
	 .

So, if N=2N0+1 is an odd integer, we have

��N+1

sN+1
	 = A1�A2A1�N0��1

s1
	 
 T��1

s1
	 .

Since sN+1=T21�1+T22s1, if we start with s1=0, the condition
dsN+1 /d�1=dsN+1 /d�1=0 reads T21=0. Let us now imple-
ment this condition, first determining eigenvalues 	i and
eigenvectors vi of the matrix

A = A2A1 = �1 + h − h2 h − 2

h2 1 − h
	 .

It is easily found that

	1,2 =
1

2
�2 − h2 
 ih�4 − h2� , �7�

v j = �	 j + h − 1

h2

1
� 
 �v1j

1
	, j = 1,2. �8�

If U is the �2�2� matrix with v1,2 as column vectors and
AD is the diagonal matrix with elements 	1,2, it is straight-
forward to write T=A1UAD

N0U−1. Finally, the condition T21
=0 gives

h�v11	1
N0 − v12	2

N0� = 	1
N0 − 	2

N0, �9�

which simplifies to

�	1

	2
	N0

=
	2 − 1

	1 − 1
. �10�

Therefore, the transition length is equal to Nc=2N0+1
where N0 is the solution of the above equation. We get

Nc =
�

�
, �11�

with

cos � =
2 − h2

2
, sin � =

h�4 − h2

2
. �12�

The curve is plotted as circles in Fig. 4 along with the
asymptotic form Nc=� /h �full line� which appears to be a
very good approximation even for small N �see the inset�.

We now turn to closed chains, which imply periodic
boundary conditions �PBC�. If spins represent magnetic lay-
ers, these boundary conditions are not physical, but for nano-
wires deposited on a substrate they are physical and corre-
spond to nanorings. In terms of the 2D mapping, PBC imply
PN+1
 P1, i.e., �N+1=�1 and sN+1=s1. Therefore, trajectories
are fixed points of order N. It is easy to realize that the

ground state for even N is the bulk spin-flop state: �2k= �̄ and

�2k+1=−�̄, with cos �̄=h /4. In fact, if �1 , . . . ,�N were a dif-
ferent configuration with a lower energy, we might replicate
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FIG. 4. Main: analytical results of the phase diagram for odd-N
open chains, Eqs. �11� and �12�. FI and NC denote ferrimagnetic
and noncollinear states. The full line is the curve hc=� /N which is
a very good approximation, even for small N �inset�.
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FIG. 5. Graphical representation of the ground state for a closed
chain with N=9. Full and dashed arrows represent spin orientations
on odd and even sites, respectively. �1=0 and for every angle �2k

there is an angle �2j+1=−�2k.
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it indefinitely for an infinite chain and get a configuration
with an energy lower than the bulk spin-flop phase �which is
the ground state�.

The above argument does not apply to odd N because the
SF phase, as well as the AF phase, which are fixed points of
order two, do not satisfy PBC for odd N. In this case, we
have a nonuniform state. In order to find it, we should look
for the points P that are iterated on themselves after N ap-
plications of the map. It appears that the configuration is
symmetric with respect to the field direction, i.e., for any
spin with an angle �� there is a spin forming an angle −��;
see Fig. 5 for N=9. Therefore, for odd N, there is one spin
with �=0. PBC allow to label this spin as “No. 1,” so that
searching the solution is now as easy as for open chains; we
apply the map N times to points �0,s1� and look for the
values s1 such that �N+1=0 and sN+1=s1. Using this method,
we have found the ground state for N=39 �Fig. 2, full
squares� and for N=9 �Fig. 5�.

In conclusion, we have studied model �3� which describes
a chain of classical planar spins with nearest neighboring AF
coupling and interacting with a �real or effective� external
field h. Since the anisotropy is zero, the infinite system is in
the bulk SF phase for any nonvanishing h. Extrema of the
energy correspond to trajectories of the 2D mapping �4� with
appropriate boundary conditions: s1=sN+1=0 for open chains
and �N+1=�1 ,sN+1=s1 for closed chains.

This method allows a fast and exact determination of the
ground states for any N �Fig. 2�. It also allows to find ana-
lytically the transition length Nc for open odd chains from
the FI to the NC state �Fig. 4�. This transition corresponds to
a change in sign of the derivative dsN+1 /d�1 at �1=0 �Fig. 3�.
Parity effects are present for open and closed chains.

With increasing the field h, the 2D map starts developing
a chaotic behavior.8,19 Studying this regime with reference to
nanowires would be an interesting subject for future work.
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